Os motores de busca de Datasheet de Componentes eletrônicos
  Portuguese  ▼
ALLDATASHEETPT.COM

X  

ISL5217EVAL1 Folha de dados(PDF) 10 Page - Intersil Corporation

Nome de Peças ISL5217EVAL1
Descrição Electrónicos  Quad Programmable Up Converter
Download  43 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Fabricante Electrônico  INTERSIL [Intersil Corporation]
Página de início  http://www.intersil.com/cda/home
Logo INTERSIL - Intersil Corporation

ISL5217EVAL1 Folha de dados(HTML) 10 Page - Intersil Corporation

Back Button ISL5217EVAL1 Datasheet HTML 6Page - Intersil Corporation ISL5217EVAL1 Datasheet HTML 7Page - Intersil Corporation ISL5217EVAL1 Datasheet HTML 8Page - Intersil Corporation ISL5217EVAL1 Datasheet HTML 9Page - Intersil Corporation ISL5217EVAL1 Datasheet HTML 10Page - Intersil Corporation ISL5217EVAL1 Datasheet HTML 11Page - Intersil Corporation ISL5217EVAL1 Datasheet HTML 12Page - Intersil Corporation ISL5217EVAL1 Datasheet HTML 13Page - Intersil Corporation ISL5217EVAL1 Datasheet HTML 14Page - Intersil Corporation Next Button
Zoom Inzoom in Zoom Outzoom out
 10 / 43 page
background image
10
FN6004.3
July 8, 2005
modulator. The maximum phase step that can occur in one
clock is
±180 degrees. Table 1 provides the change in phase
weighting of the input bits.
Shaping Filter
The shaping filter provides the necessary pulse shaping
required on the input data to implement various QASK and
shaped FM modulation formats. Two identical shaping filters
(one each for the I and Q paths) are provided. The shaping
filter architecture uses a NCO controlled interpolating FIR,
capable of 4, 8, or 16 interpolation phases. The number of
interpolation phases, (IP) is loaded into FIR Control (0xd,
bits 1:0). The span of the impulse response of the polyphase
filter can vary from 4-16 data samples. The desired sample
Data Span, (DS) value minus one is loaded into FIR Control
(0xd, bits 7:4). Thus, the required number of coefficients (or
filter span) becomes:
The Interpolation Phase also determines the rate to compute
a polyphase output by selecting the appropriate timing from
the Sample Rate NCO to drive the shaping filter at 4x, 8x, or
16x the input sample rate. The Data Span selects the
number of samples to convolve. Each convolution requires
DS reference clocks for each phase of the filter. An output is
calculated (IP) times for each input sample. To allow
sufficient processing time for each output, the reference
clock must be as follows:
Conversely, the input sample rate requires:
where fCLK is the frequency of the reference clock, IP is the
shaping filter interpolate rate; and DS is the number of data
samples in the filter span. For example, if fCLK = 104MHz,
the filter span is 16 samples, and the interpolation rate is 16,
then the maximum input sample rate, fS is 104/256 =
406.25kHz. Table 2 shows several examples of calculations
for FIR input sample rates based on master reference clock
rate, number of data samples, and interpolation rate. The
data exits the shaping filters at the interpolated rate.
The shaping filters have programmable coefficients which
must be loaded via the microprocessor interface. The QPUC
supports loading coefficients for two shaping filters, with FIR
Control (0xd, bit 8) selecting the active filter. The I and Q
shaping filters are identical and may be loaded
simultaneously or separately, allowing for different gains and
responses through the filter if desired.
Because 16 interpolation phases are possible, the
coefficients are structured in sets of 16, one set for each
phase of the shaping filter. The convolution algorithm
sequentially steps through each of these phases, beginning
with phase 0. The coefficients for the shaping filters are
generated by designing the prototype filter at the
interpolated rate. The coefficients are then divided into
interpolation phases by taking every nth tap of the prototype
filter and storing the coefficient as an element of a coefficient
set. The IP value determines the addressing interval through
the prototype filter to create the coefficient sets for the filter
phases. The first coefficient set begins at address 0. The
next coefficient set begins at address 1 and continues in a
like manner for the remaining coefficient sets. For a 16 tap,
interpolate-by-4 filter, the calculations for filter 1 are:
Polyphase output 0 = (C0*D[n]) + (C4*D[n-1]) + (C8*D[n-2])
+ (C12*D[n-3])
Polyphase output 1 = (C1*D[n]) + (C5*D[n-1]) + (C9*D[n-2])
+ (C13*D[n-3])
Polyphase output 2 = (C2*D[n]) + (C6*D[n-1]) + (C10*D[n-2])
+ (C14*D[n-3])
Polyphase output 3 = (C3*D[n]) + (C7*D[n-1]) + (C11*D[n-2])
+ (C15*D[n-3])
If FIR Control (8) is set the calculations for filter 2 are:
Polyphase output 0 = (D0*D[n]) + (D4*D[n-1]) + (D8*D[n-2])
+ (D12*D[n-3])
TABLE 1. PHASE WEIGHTING
d
φ(nT)/dt
DEGREES/SAMPLE
1000 0000 0000 0000
-180
0000 0000 0000 0000
0
0111 1111 1111 1111
~+180
# Coefficients = (DS)(IP)
(EQ. 2)
CLK
DS
() IP
() f
S
()
(EQ. 3)
f
S
f
CLK [IP
()
DS
() ]
(EQ. 4)
TABLE 2. EXAMPLE CALCULATIONS
EXAMPLE
fCLK
DS
IP
MAX fS
1
104MHz
16
16
104/256 = 406.25kHz
2
104MHz
16
8
104/128 = 812.5kHz
3
104MHz
16
4
104/64 = 1.625MHz
4
104MHz
10
4
104/40 = 2.600MHz
5
104MHz
8
4
104/32 = 3.250MHz
6
104MHz
4
4
104/16 = 6.500MHz
TABLE 3. FIR CONTROLS
IP
STARTING ADDRESS
W/FIR CONTROL (8) = ‘0’
STARTING ADDRESS
W/FIR CONTROL (8) = ‘1’
40
8
80
8
16
0
128
ISL5217


Nº de peça semelhante - ISL5217EVAL1

Fabricante ElectrônicoNome de PeçasFolha de dadosDescrição Electrónicos
logo
Intersil Corporation
ISL5217EVAL1 INTERSIL-ISL5217EVAL1 Datasheet
766Kb / 43P
   Quad Programmable Up Converter
logo
Renesas Technology Corp
ISL5217EVAL1 RENESAS-ISL5217EVAL1 Datasheet
1Mb / 43P
   Quad Programmable Up Converter
More results

Descrição semelhante - ISL5217EVAL1

Fabricante ElectrônicoNome de PeçasFolha de dadosDescrição Electrónicos
logo
Renesas Technology Corp
ISL5217 RENESAS-ISL5217 Datasheet
1Mb / 43P
   Quad Programmable Up Converter
logo
Intersil Corporation
ISL5217 INTERSIL-ISL5217 Datasheet
766Kb / 43P
   Quad Programmable Up Converter
logo
Texas Instruments
GC5016 TI-GC5016 Datasheet
760Kb / 88P
[Old version datasheet]   WIDEBAND QUAD DIGITAL DOWN CONVERTER/ UP CONVERTER
logo
ETA SOLUTIONS CO. LIMIT...
ETA1013 ETA-ETA1013 Datasheet
212Kb / 1P
   12W Output Power, Programmable Frequency up to 1MHz Step-Up Converter
logo
STMicroelectronics
TDA7565 STMICROELECTRONICS-TDA7565_10 Datasheet
211Kb / 19P
   Quad power amplifier with integrated step-up converter
logo
ams AG
AS1352 AMSCO-AS1352_1 Datasheet
307Kb / 10P
   Programmable Quad LDO
logo
National Semiconductor ...
DS32EV400 NSC-DS32EV400 Datasheet
1Mb / 16P
   Programmable Quad Equalizer
logo
ams AG
AS1352 AMSCO-AS1352 Datasheet
160Kb / 2P
   Programmable Quad LDO
logo
National Semiconductor ...
DS32EV400 NSC-DS32EV400_08 Datasheet
963Kb / 18P
   Programmable Quad Equalizer
logo
Texas Instruments
DS64EV400 TI1-DS64EV400_15 Datasheet
3Mb / 22P
[Old version datasheet]   Programmable Quad Equalizer
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43


Folha de dados Download

Go To PDF Page


Ligação URL




Privacy Policy
ALLDATASHEETPT.COM
ALLDATASHEET é útil para você?  [ DONATE ] 

Sobre Alldatasheet   |   Publicidade   |   Contato conosco   |   Privacy Policy   |   roca de Link   |   Lista de Fabricantes
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com